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A b s t r a c t  

Conventional (point) symmetry, antisymmetry, mag- 
netic and complete symmetry are used for the descrip- 
tion of specific features of space, time and some 
crystallographic phenomena. The Onsager principle 
is extended to phenomena described by second-rank 
axial tensors. As a result it is seen that the symmetric 
part of such a tensor changes the sign on time reversal. 
The actions of two operations - time reversal R and 
time inversion T ( T = i ,  'spatial inversion') - are 
compared. It is shown that the equations of crystal 
physics derived by Voigt are in agreement with the 
Onsager principle. 

I n t r o d u c t i o n  

A formal (analytical) apparatus of tensor crystal- 
lography based on the works by Curie, Neumann, 
Voigt and Shubnikov permits one to predict important 
symmetry characteristics for different physical 
phenomena occurring in crystals. The simplest 
example is the pyroeffect which may, although not 
necessarily, be revealed in a polar crystal with a 
special (unique) polar direction. On the other hand, 
symmetry characteristics allow one to state that if the 
symmetry conditions are violated the phenomenon 
under consideration cannot be revealed at all. For 
example, the pyroeffect (in the generally accepted 
sense) in centrosymmetric crystals cannot be detected, 
i.e. it is forbidden. The above statements are based 
on the concepts or" conventional point symmetry using 
orthogonal transformations in three-dimensional 
space (proper and improper rotations, group 03). 

Works on thermodynamics of irreversible processes 
and, first and foremost, the Onsager (1931) work have 

established the additional symmetry requirements for 
some phenomena to be realized. They follow from 
invariance of relationships describing physical 
phenomena with respect to time reversal R (t ~ - t ) .  
Some phenomena (e.g. magneto-electric effect) which 
are allowed from the standpoint of orthogonal spatial 
transformations cannot be physically realized in all 
crystals, the relationships describing these 
phenomena;-generally speaking, do not meet the 
requirements imposed on them by operation R 
(Landau & Lifshitz, 1979). 

Antisymmetry (Shubnikov & Belov, 1964) and 
magnetic symmetry (Sirotin & Shaskol'skaya, 1982) 
provide the allowance for requirements imposed by 
both operations R and the operations inherent in the 
03 group. At the same time, practice shows (see 
below) that the use of magnetic symmetry eliminates 
some difficulties, giving rise to others. This necessi- 
tates the introduction (in addition to symmetry) of 
physical characteristics of crystals under consider- 
ation, i.e. a concept concerning two types of crystals 
- those having a magnetic structure (Landau & Lif- 
shitz, 1960) and those without it. The situation seems 
to be rather peculiar - to judge some, say, magnetic 
properties of a crystal, e.g. piezomagnetism or mag- 
netoelectric effect, on the basis of magnetic symmetry 
of the crystal one should know a priori whether the 
crystal is magnetic or not. 

Therefore, it is very important to establish purely 
symmetric characteristics of physical phenomena in 
crystals which are to be used (after due account of 
crystallophysical relationships in terms of time 
reversal R) in a way similar to that used at the 
beginning of this article. In the following this problem 
is solved within the framework of complete symmetry 
(Zheludev, 1983). 

0108-7673/86/020122-06501.50 © 1986 International Union of Crystallography 
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1. Antisymmetry, complete and magnetic symmetry 

The use of conventional symmetry in physical crystal- 
lography results in the fact that we treat unequally 
even such simple phenomena as electric and magnetic 
properties - there are ten classes for polar crystals 
and thirteen for axial ones. This is associated not with 
symmetry uniqueness of the phenomena themselves 
but rather with the fact that conventional symmetry 
treats differently 'quantitative' characteristics of 
phenomena (for example + and - signs, two 
'opposite' colors, etc.) and those characteristics of the 
phenomena which take into account right and left 
forms (the signs of enantiomorphism). Indeed, con- 
ventional symmetry deals with figures of only one 
'quantitative sign' (e.g. of one color), whereas figures 
or their parts can possess both signs of enantiomorph- 
ism. Even this fact already proves that, for example, 
an electric dipole and magnetic moment cannot be 
described similarly within the conventional sym- 
metry. 

The first steps towards equal treatment of the indi- 
cated characteristics of crystals via the extended con- 
cept of point symmetry were undertaken by Heesch 
(1930) on the basis of group theory and by Shubnikov 
(1951) who used the geometrical method. 

In antisymmetry, according to Shubnikov & Belov 
(1964), two pairs of signs (i.e. two colors and two 
signs of enantiomorphism) are u s e d  so that, for 
example, a right white tetrahedron of the general form 
has a corresponding right tetrahedron but of black 
color. Transition from such a figure to the other 
(antifigure) is realized via an operation of anti-iden- 
tity denoted in antisymmetry as 1. Since the present 
paper uses the same notation for another operation 
in complete symmetry, in what follows operation 1 
in antisymmetry will be denoted as _1 a. It can easily 
be seen that using the above extension we encounter 
some difficulties in our attempts to describe physical 
phenomena - it would have been more natural for 
figures and 'antifigures' to differ by both pairs of signs. 

© 
(a) (b) (e) (f)  

@ 0  ® • 
(¢) (d) (g) (h) 

Fig. 1. The simplest elements used in complete symmetry. (a), (b) 
Positive (÷) and negative ( - )  scalar spheres; (c), (d) left (+) 
and right ( - )  pseudoscalar spheres; (e), (f) left white and right 
black spheres; (g), (h) right white and left black spheres. 
Operation T transforms sphere (c) into sphere (d) and sphere 
(e) into sphere (g); operation 1 transforms sphere (a) into sphere 
(b) and sphere (f) into sphere (g); operation I c transforms 
sphere (a) into sphere (b), sphere (c) into sphere (d), sphere 
(e) into sphere (f) and sphere (g) into sphere (h). 

This drawback of antisymmetry extension is associ- 
ated with the fact that it is intended for the description 
of two-color figures. In conventional symmetry and 
antisymmetry a tetrahedron of the general form is 
chosen as a 'brick' of a figure, i.e. a figure with 
symmetry 1. For such a figure the sign of enan- 
tiomorphism is determined by its form. In physics no 
'privileges' can be granted to any characteristic (any 
pair of signs). This may be attained, for example, by 
considering the above 'quantitative' characteristic as 
that of a scalar and a sign of enantiomorphism as a 
pseudoscalar. Such an interpretation of the conven- 
tional symmetry extension to two pairs of 'opposite'  
signs received the name of complete symmetry 
(Zheludev, 1983). Geometrical interpretation of com- 
plete symmetry should use scalar and pseudoscalar 
spheres as 'bricks', their symmetry groups being 
oo/ oo/ mmm and oo/oo/mmm, respectively. 

Identical treatment of both pairs of signs in com- 
plete symmetry permits one to determine the transfor- 
mation of a figure into an antifigure (the correspond- 
ing operation in complete symmetry is also denoted 
by !, so in what follows we shall refer to it as 1 c) as 
a transformation with a corresponding change of both 
signs (right black sphere is transformed into left 
white). Equivalent transformation is also that of 
spheres characterized by only one sign - the operation 
of spatial inversion ( i  = c) - which does not change 
the sign of a scalar sphere but alters that of a pseudo- 
scalar one. In turn, a complex operation of ' inversion 
with an additional change in the sign',* _1, alters the 
sign of a scalar sphere but preserves that of a pseudo- 
scalar one. From the aforesaid it follows that in the 
general case 1 c = 1 .1  (Fig. 1). 

Equivalent interpretation of scalar and pseudo- 
scalar quantities leads to equivalent interpretation of 
electric and magnetic phenomena - of the 90 groups 
in the complete symmetry of crystals, 31 groups 
describe spontaneously polarized crystals and 31 
spontaneously magnetized ones. In that light, the 
generalization of magnetic symmetry based on two 
pairs of 'opposite'  signs (Sirotin & Shaskol'skaya, 
1982) seems to be at least inconsistent and formally 
illogical, which is associated with the fact that both 
pairs of signs in magnetic symmetry are pseudo- 
scalars. One pair of signs is related to magnetic 
moments (their poles have opposite signs of enan- 
tiomorphism) while the other pair is to describe 
'geometrically axial' directions not related to magnet- 
ism. It is also taken that on the action of the operation 
of time reversal R magnetic poles change their signs, 
whereas geometrically axial ones preserve it. Mag- 
netic symmetry (similar to antisymmetry) is described 
by 122 groups (out of them 90 are analogous to those 

* This additional change of sign (on inversion) relates to both 
scalar and pseudoscalar signs (to each one separately or to both 
simultaneously), 1 = 1. ! c. 
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used in complete symmetry and 32 are non-magnetic 
ones, similar to grey noncolored groups in antisym- 
metry). The division of axial directions into two types 
mentioned earlier on the basis of symmetry consider- 
ation of a general (group-theoretical) approach is by 
no means justified. This also gives rise to certain 
difficulties in the interpretation of some physical 
phenomena using magnetic symmetry (see §3). 
Within the framework of magnetic symmetry, electric 
and magnetic properties of crystals cannot be treated 
equally (in the indicated 32 groups, 'grey' with respect 
to magnetism, electric polarity is not forbidden). 

2. The Onsager principle and tensor relationships used 
in conventional symmetry 

Interaction of different forces described by polar- and 
axial-vector quantities results in some new 
phenomena, of which the only physically allowable 
ones are those meeting the requirements of time 
reversal - left- and right-hand-side parts of relation- 
ships describing such phenomena should have the 
same signs on the action of operation R. Thus, two 
polar-vector and two axial-vector quantities changing 
sign on the action of operation R may be related only 
through a quantity which does not linearly depend 
on time. If one of the vector quantities changes its 
sign on the action of operation R while the other 
preserves its sign, they should be related through a 
quantity linearly dependent on time. 

A detailed analysis of symmetry characteristics in 
connection with the requirements following from time 
reversal was carded out by Onsager (1931) who estab- 
lished the well known kinetic-coefficient symmetry 
principle (Landau & Lifshitz, 1960). According to 
this principle the following condition is valid for 
second-rank polar tensors, i.e. for relationships 
between similar vector quantities (say two polar or 
two axial vectors), equally affected by operation R: 

aij =aji. (1) 

Examples of such relationships are 

Pi =a0Qj  
g ( +  + + )  

R ( -  + - )  

Mi = a o Si (2) 

R ( -  + - )  

R ( +  + + ) ,  

where P and Q are polar vectors, M and S are axial 
vectors, and a 0 is the symmetric second-rank polar 
tensor. 

If two polar or two axial vectors are affected 
differently by time reversal, the Onsager condition 
written in the form 

aij  = - -a j i  (3) 

means that the quantities under consideration are 
related through an axial vector (3). This case is 
described by the following 'vector products' 

a = [ H Q ]  

R ( +  - - )  
(4) 

M = [ n  S] 

R ( -  - + ) ,  

where H is the axial vector linearly dependent on time. 
It can be shown that for a second-rank axial tensor 

the condition 

A ij = A j i  (5) 
will be analogous to condition (1) when both 

~fferent) end vectors are differently affected by 
operation R: 

Pi = A,j Hj (6) 
R ( +  - - ) .  

In turn, the condition analogous to (3), 

A o = -Aji, (7) 

is valid if both different end vectors of the axial tensor 
are affected equally by operation R. The restrictions 
imposed on the vectors by (5) and (7), on the one 
hand, and (1) and (3), on the other, have 'opposite 
meanings', otherwise we should arrive at a contradic- 
tion - the relationship P =  [HQ] would permit the 
change of the sign of two (polar, in this case) vectors 
under the effect of operation R: 

P, = [ Q H ]  
(8) 

R ( -  - + ) .  

Yet this contradicts condition (1) since two equal 
vectors should be related via a symmetric polar tensor 
[ see (2) ] and not a vector [ see (8) ]. 

3. Crystallophysical phenomena within the framework 
of conventional symmetry 

At present three phenomena give rise to some difficul- 
ties related to symmetry - piezomagnetism (Borovic- 
Romanov, 1954), magnetoelectric effect (Astrov, 
1960) and magnetogyration (Zheludev, 1964; 
Zheludev & Vlokh, 1983). It is commonly accepted 
that in piezomagnetism 

rij - k q k H k  (9) 

(where r is the strain tensor, H is the magnetic field 
and k is the third-rank axial tensor) and in the mag- 
netoelectric effect (6) 

Pi = Ol i jHk  (10) 

(where P is the electric polarization and H is the 
magnetic field), the 'time parity' principle is violated. 
The point is that, according to the accepted concepts, 
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relationships (9) and (10) satisfy the conditions 
imposed by the Onsager principle only for crystals 
with a 'magnetic structure'. Such a possibility is pro- 
vided by magnetic symmetry (for crystals with a 'mag- 
netic structure' tensor k0k and otij change the sign 
after application of operation R). 

The interpretation of these phenomena from the 
standpoint of magnetic symmetry is not justified for 
the reasons considered in the Introduction and § 1. 
Relationship (9) satisfies the Onsager principle in 
terms of complete symmetry where the crystal is axial 
not only because of the presence of a magnetic struc- 
ture. Of course, in crystals with a magnetic structure 
piezomagnetism can readily be detected although this 
does not prove that this phenomenon is a priori 
impossible if the crystal is axial not because of the 
presence of a magnetic structure. 

The so-called 'time-parity violation' for the mag- 
netoelectric effect can only be established in the case 
(as is commonly accepted) where it is taken that 
operation R does not change the sign of a symmetric 
second-rank axial tensor, ot U (as is accepted in elec- 
trodynamics, vector P does not change its sign, 
whereas vector H changes its sign). As was shown in 
§ 2 [see (6)], it is just in the case under consideration 
that oto changes the sign on the action of operation 

R ,  which lifts the 'prohibition' on the realization of 
the phenomenon in crystals possessing no magnetic 
structure. 

Magnetogyration, a new phenomenon which has 
recently been predicted and then observed, consists 
in the appearance in crystals of optical activity 
linearly dependent on the magnetic field and 
described by the expression 

go = 6ijkHk (11) 

where g is the symmetric second-rank axial vector, 6 
is the third-rank polar tensor analogous to that 
describing the piezoeffect, and H is the magnetic field. 
From the commonly accepted symmetry standpoint 
(with no account of a possible change in the sign of 
gij on operation R) magnetogyration contradicts the 
Onsager principle and is possible only in crystals with 
magnetic structure. In fact, it has been discovered 
and studied in nonmagnetic crystals, e.g. cadmium 
sulfide and lead germanate (Zheludev & Vlokh, 1983) 
(Fig. 2). If we take into account the Onsager principle 
extended to second-rank axial tensors, (11) will 
describe phenomena allowable from the symmetry 
standpoint. Concluding this section, we should like 
to note that although the Onsager principle cannot 
be readily applied to all crystallophysical phenomena 
the requirements imposed by it, if properly used and 
accounting for its extension to second-rank axial 
tensors, permit one to draw the conclusion that all 
three above-mentioned phenomena show no 'viola- 
tion of time parity'. 
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4. Crystallophysical phenomena in terms of complete 
symmetry 

According to the generally accepted concepts time is 
homogeneous, whence the law of conservation of 
energy follows, whereas space is both homogeneous 
and isotropic, whence the laws of conservation of 
momentum and moment of momentum follow 
(Landau & Lifshitz, 1976). Then space cannot be 
characterized by polar-vector and axial-vector quan- 
tities. For time the situation is reversed - it cannot 
be described by scalar characteristics (energy being 
taken to be a scalar quantity). 

Taking into consideration that space and time can 
be characterized by scalar, polar-vector or axial- 
vector quantities alone (it is just such quantities which 
describe the well known properties of space and time 
symmetry), we come to the conclusion that the change 
in the sign of time (t-->-t) (time reversal) may be 
accompanied by a change in direction of polar-vector 
and axial-vector quantities. In particular, such 
behavior should be observed for linear and angular 
velocities, quantities linearly dependent on time. 
Force (a polar vector) and force moment (an axial 
vector) do not change their signs on the action of 
operation R. Energy (a scalar quantity) does not 
change its sign upon time reversal. Since pseudoscalar 
quantities do not participate in the description of well 
known properties of space and time symmetry, the 
effect of operation R on their behavior is not deter- 
mined. We should like to remind the reader that from 
the extended Onsager principle (§ 2) it follows that 
quantities described by a symmetric second-rank axial 
tensor (in particular by a pseudoscalar) should 
change their signs on the action of operation R. 

Thus, within conventional symmetry the operation 
of time reversal R in crystal physics may change, in 
principle, the signs of polar and axial vectors and 
pseudoscalars. The theory of electromagnetism deter- 
mines, in addition to energy which does not change 
its sign on the action of R, the behavior of the polar 
vectors of an electric dipole and the axial vector of 
magnetic moment, the former preserves its sign, 
whereas the second alters it. Quantum mechanics 
determines the behavior of energy, not changing the 
sign on the action of operation R, and the 'direction 

0"20 I 

0.10 

-3 -2 - i ~  
~-o~"°"'°~ ~ ' ' ' ~ -  -0.10 ~ ~ e ~ o ~  • 

I - "  -0 .20 

Ap, deg cm-' 

1 2 3 
H,, kOe 

Fig. 2. Magnetogyration part (with subtracted Faraday effect) of 
a rotation of light polarization plane v e r s u s  the strength of a 
magnetic field. (1) CdS crystals, (2) PbsGe3Oll: e~ + (lead germa- 
nate) crystals. (1 oersted =79.5775 Am-1.) 
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of the motion', changing the sign on this operation 
(Elliot & Dawber, 1979). 

Specific behavior of vector and scalar quantities 
under the action of operation R are summarized in 
Table 1, which also provides the data on the action 
of spatial inversion T (complete symmetry) and inver- 
sion plus recoloring, 1. Comparison of the listed data 
shows that the first and the third lines of Table 1 are 
consistent with operation T (line four). Moreover, 
line two is consistent with line one.* It is very impor- 
tant to emphasize he re  that lines one and four 
(operations R and 1, the latter being denoted as T 
in complete symmetry) are also consistent (see 
Zheludev, 1983, Appendix III). The consistency of 
operation I (T)  with the known operation of time 
reversal R is quite important and should be used in 
two aspects. Firstly, since this operation is unique 
and its action is well defined, it is possible to relate 
geometric images (i.e. a polar vector and a pseudo- 
scalar) to time. These images change sign on the 
action of spatial inversion (but not on inversion of 
space) (see Table 1). Secondly, the use of the indi- 
cated images provides quite a simple verification of 
the validity of any relationship with respect to time 
reversal. For that it suffices to know such geometric 
images that describe the quantities under consider- 
ation - polar or axial vectors, scalars or pseudoscalars 
(higher-rank tensors can be represented as a set of 
these quantities). 

Fig. 3 illustrates some relationships of crystal phys- 
ics and also the fulfilment of requirements imposed 

* Operation R compared with T is defined for polar and axial 
vectors in 'opposite '  ways. Yet this does not contradict the require- 
ments imposed by operation T on relationships describing actual 
electromagnetic phenomena [see (6) and (8)]. 

SPACE AND TIME INVERSION IN PHYSICAL CRYSTALLOGRAPHY 
- : .  

Table 1. The action of  space and time transformation 
operations on vector and scalar quantities 

= I 

Pi = e¢ o Ej F = [D, V ]  

T -  + - T -  + - 

(P)+ - + (P) + - + 

~a) (b) 

1 

P, = o4i H j  ro = ~ jk  Pk 

T -  - + T +  ± - 

(P) + + - p- =; + 

(c) (d) 

Fig. 3. The action of T(1) and P(_i) operations on quantities 
describing various physical phenomena. (a) Electric polariz- 
ation; (b) Coriolis phenomenon; (c) magnetoelectric effect 
[equation (10)]; (d) inverse piezoeffect. 

Polar Axial 
Operation vector Scalar vector Pseudoscalar 

Time reversal R in crystal 
physics (conventional 
symmetry) :¢ + ± - 

Time reversal in the theory 
of electromagnetism + + - 

Time reversal in quantum 
mechanics :~ + + 

Spatial inversion I(T) - + + - 
Inversion with "recoloring" 

I_(P), complete symmetry + - - + 

by operation I (T)  (called here time inversion to dis- 
tinguish it from other operations) and _I(P) (space 
inversion). Note that simple tensor relationships (no 
higher than second-rank tensors), which describe the 
phenomena occurring in reality, meet the demands 
of operation T alone, while those of higher order 
meet the requirements of operations T and P. 

All tensor relationships used in crystal physics are 
obtained from the well known formulae for transfor- 
mations of axial and polar tensor components occurr- 
ing during the transformations of the reference system 
(the change in the sign of enantiomorphism for the 
reference system results in the necessity of using sign 
- for axial tensors in these equations etc. (Nye, 1964). 
The above rules uniquely correspond to the require- 
ments following_from the transformations associated 
with operation 1 (T). 

As is seen from Table 1, multiplication of 
operations i (T)  with _I(P) in complete symmetry 
always transforms a phenomenon into an anti- 
phenomenon (1.1 = lC). In its application to the 
problem of particles and antiparticles in high-energy 
physics, such multiplication is equivalent to a so- 
called CPT transformation (Zheludev, 1977): CPT = 
-1 ,  _I(P). I (T)  = -1  (letters P and T have different 
meanings in these relationships). 

I am grateful to Dr L. I. Man who kindly translated 
my paper into English. 
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Abstract 

Information on the triplet phase sum @~ of the struc- 
ture factor product F(-h)F(h-g)F(g) can be 
deduced from the rocking curve of a 0-scan experi- 
ment scanning through a three-beam position. For 
non-centrosymmetric structures, four typical profiles 
can be observed. For @:~ = 0, 180 °, asymmetric profiles 
result, whereas a nearly symmetrical decrease or 
increase of the two-beam intensity appears for @:~ = 
+90 °. In a first approximation this behaviour can be 
explained by the interference between the directly 
diffracted wave of b and the 'Renninger Umweg' wave 
ofg and h - g .  Their phase relationship and the ampli- 
tudes are governed by a spatial resonance term, which 
causes a phase shift of 180 ° and a continuously turning 
on and off of the Umweg wave amplitude scanning 
through the three-beam position. This interference 
can be displayed by a phase-vector diagram which 
outlines the main features of the ~-scan profiles. The 
semi-quantitative results are confirmed by calculation 
based on the dynamical theory. The distinction 
between @~ = +90 ° allows the experimental determi- 
nation of enantiomorphs. 

1. Introduction 

It has been suggested for a long time that multiple- 
beam X-ray diffraction can be applied to determine 
the phase relationship of the waves involved. In a 
three-beam diffraction case three reciprocal-lattice 
points (r.I.p.) O, H, G simultaneously lie on or close 
to the Ewald sphere. Then, three strong wave fields 
are propagated in the crystal owing to the reciprocal- 
lattice vectors (r.l.v.) O, h, g with the propagating 
vectors K ( n ) = K ( O ) + n ,  n = O ,  h, g, according to 
Bragg's law. From a more or less kinematical point 

0108-7673/86/020127-07501.50 

of view, the amplitude of the total wave field propa- 
gated in the direction K(h) results from the interfer- 
ence between the 'direct' wave diffracted at the lattice 
plane (h) and the detour excited wave ('Renninger 
Umweg' wave) diffracted at the lattice planes (g) and 
(h -g ) .  This depends on the phase difference and on 
the amplitudes of both waves given by their structure 
factors F(h),  F(g) and F ( h - g ) ,  respectively. There- 
fore, the diffracted intensity in the three-beam case 
bears information on the phase difference (Lipscomb, 
1949): 

@~ = [ ~(g) + ~ ( h -  g)] - ~(h) 

= ~p ( -h )  + ~p(g) + ~ ( h - g ) ,  

which represents a structure-invariant triplet phase 
relationship. The influence of this interference on the 
two-beam intensity can be measured by a ~-scan 
experiment monitoring the integrated intensity I(h) 
while the crystal is rotated about the direction h and 
scanned through a three-beam position. The resultant 
gt-scan profiles must depend on the triplet phase @;~. 
They can be explained by the continuously turning 
on and off of the amplitude of the Umweg wave and 
an additional phase shift a (qt) by 180°.when the r.l.p. 
G passes through the Ewald sphere (Hiimmer & Billy, 
1982).* If it is borne in mind that Bragg diffraction 
is a spatial resonance phenomenon (Ewald, 1917), 
the behaviour of the Umweg wave is nothing but the 
behaviour of every resonance phenomenon passing 
;through the resonance. 

c. 

* In the cited paper there is an error, k~ < 0 and xF > 0 correctly 
mean that the third r.I.p. G lies inside or outside the Ewald sphere 
respectively, i.e. all the gt-scan profiles drawn in the paper refer 
to an in-out rotation sense. 
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